Generalized Larcombe–Fenessey invariants of matrix powers

نویسندگان

چکیده

In this article, we have found significant generalization of the invariance properties powers matrices discovered by Larcombe, Fenessey and further explored Zeilberger. Moreover, interesting new results exhibiting similar phenomena in a more general set-up.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Resolutions of Powers of Generalized Mixed Product Ideals

Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk  have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...

متن کامل

Gauge Invariants from the Powers of Antipodes

We prove that the trace of the nth power of the antipode of a Hopf algebra with the Chevalley property is a gauge invariant, for each integer n. As a consequence, the order of the antipode, and its square, are invariant under Drinfeld twists. The invariance of the order of the antipode is closely related to a question of Shimizu on the pivotal covers of finite tensor categories, which we affirm...

متن کامل

Generalized inverse of fuzzy neutrosophic soft matrix

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Aim of this article is to find the maximum and minimum solution of the fuzzy neutrosophic soft relational equations xA=b and Ax=b, where x and b are fuzzy neutrosophic soft vector and A is a fuzzy neutrosophic soft matrix. Wheneve...

متن کامل

Generalized numerical ranges of matrix polynomials

In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.

متن کامل

Cluj Matrix Invariants

The problem of distances in a graph, G, is one of the most studied questions, both from theoretical point of view and applications (the reader can consult two recent reviews ). It is connected to the Wiener number, W, or "the path number" as denominated by its initiator. In acyclic structures, Wiener number and its extension, hyper-Wiener number, can be defined as edge/path contributions, Ie/p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2022

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2022.2036087